189 research outputs found

    New Type Lube Oil for HFC-134a Compressor System

    Get PDF

    New Lube 0il for Stationary Air Conditioner

    Get PDF

    Protective effects of a gastrointestinal agent containing Korean red ginseng on gastric ulcer models in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Korean red ginseng (KRG) is a ginseng that has been cultivated and aged for 4-6 years or more, and goes through an extensive cleaning, steaming and drying process. KRG contains more than 30 kinds of saponin components and has been reported as having various biological properties, such as anti-fatigue action, immune restoration, and neurovegetative effect. The purpose of this study was to assess the effects of a KRG-containing drug (KRGCD) on gastric ulcer models in mice.</p> <p>Methods</p> <p>Stomach ulcers were induced by oral ingestion of hydrochloride (HCl)/ethanol or indomethacin. Treatment with KRGCD (30, 100, and 300 mg/kg, p.o.) occurred 1 hr before the ulcer induction. Effect of KRGCD on anti-oxidant activity and gastric mucosal blood flow with a laser Doppler flowmeter in mice stomach tissue was evaluated.</p> <p>Results</p> <p>KRGCD (100 and 300 mg/kg, p.o.) significantly decreased ethanol- and indomethacin-induced gastric ulcer compared with the vehicle-treated (control) group. KRGCD (100 and 300 mg/kg) also decreased the level of thiobarbituric acid reactive substance (TBARS) and increased gastric mucosal blood flow compared with the control group.</p> <p>Conclusions</p> <p>These results suggest that the gastroprotective effects of KRGCD on mice ulcer models can be attributed to its ameliorating effect on oxidative damage and improving effect of gastric mucosal blood flow.</p

    Antimicrobial Activity, Acute Toxicity and Cytoprotective Effect of Crassocephalum Vitellinum (Benth.) S. Moore Extract in a Rat Ethanol-HCl Gastric Ulcer Model.

    Get PDF
    A decoction of Crassocephallum vitellinum (Benth.) S. Moore (Asteraceae) is used in Kagera Region to treat peptic ulcers. This study seeks to evaluate an aqueous ethanol extract of aerial parts of the plant for safety and efficacy. An 80% ethanolic extract of C. vitellinum at doses of 100, 200, 400 and 800 mg/kg body wt was evaluated for ability to protect Sprague Dawley rats from acidified ethanol gastric ulceration in comparison with 40 mg/kg body wt pantoprazole. The extract and its dichloromethane, ethyl acetate, and aqueous fractions were also evaluated for acute toxicity in mice, brine shrimp toxicity, and antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholera (clinical isolate), and Streptococcus faecalis (clinical isolate). The groups of phytochemicals present in the extract were also determined. The ethanolic extract of C. vitellinum dose-dependently protected rat gastric mucosa against ethanol/HCl insult to a maximum of 88.3% at 800 mg/kg body wt, affording the same level of protection as by 40 mg/kg body wt pantoprazole. The extract also exhibited weak antibacterial activity against S. typhi and E. coli, while its ethyl acetate, dichloromethane and aqueous fractions showed weak activity against K. pneumonia, S.typhi, E. coli and V. cholera. The extract was non-toxic to mice up to 5000 mg/kg body wt, and the total extract (LC50 = 37.49 μg/ml) and the aqueous (LC50 = 87.92 μg/ml), ethyl acetate (LC50 = 119.45 μg/ml) and dichloromethane fractions (88.79 μg/ml) showed low toxicity against brine shrimps. Phytochemical screening showed that the extract contains tannins, saponins, flavonoids, and terpenoids. The results support the claims by traditional healers that a decoction of C.vitellinum has antiulcer activity. The mechanism of cytoprotection is yet to be determined but the phenolic compounds present in the extract may contribute to its protective actions. However, the dose conferring gastro-protection in the rat is too big to be translated to clinical application; thus bioassay guided fractionation to identify active compound/s or fractions is needed, and use of more peptic ulcer models to determine the mechanism for the protective action

    C/EBPβ Promotes Transition from Proliferation to Hypertrophic Differentiation of Chondrocytes through Transactivation of p57Kip2

    Get PDF
    BACKGROUND: Although transition from proliferation to hypertrophic differentiation of chondrocytes is a crucial step for endochondral ossification in physiological skeletal growth and pathological disorders like osteoarthritis, the underlying mechanism remains an enigma. This study investigated the role of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) in chondrocytes during endochondral ossification. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryos with homozygous deficiency in C/EBPbeta (C/EBPbeta-/-) exhibited dwarfism with elongated proliferative zone and delayed chondrocyte hypertrophy in the growth plate cartilage. In the cultures of primary C/EBPbeta-/- chondrocytes, cell proliferation was enhanced while hypertrophic differentiation was suppressed. Contrarily, retroviral overexpression of C/EBPbeta in chondrocytes suppressed the proliferation and enhanced the hypertrophy, suggesting the cell cycle arrest by C/EBPbeta. In fact, a DNA cell cycle histogram revealed that the C/EBPbeta overexpression caused accumulation of cells in the G0/G1 fraction. Among cell cycle factors, microarray and real-time RT-PCR analyses have identified the cyclin-dependent kinase inhibitor p57(Kip2) as the transcriptional target of C/EBPbeta. p57(Kip2) was co-localized with C/EBPbeta in late proliferative and pre-hypertrophic chondrocytes of the mouse growth plate, which was decreased by the C/EBPbeta deficiency. Luciferase-reporter and electrophoretic mobility shift assays identified the core responsive element of C/EBPbeta in the p57(Kip2) promoter between -150 and -130 bp region containing a putative C/EBP motif. The knockdown of p57(Kip2) by the siRNA inhibited the C/EBPbeta-induced chondrocyte hypertrophy. Finally, when we created the experimental osteoarthritis model by inducing instability in the knee joints of adult mice of wild-type and C/EBPbeta+/- littermates, the C/EBPbeta insufficiency caused resistance to joint cartilage destruction. CONCLUSIONS/SIGNIFICANCE: C/EBPbeta transactivates p57(Kip2) to promote transition from proliferation to hypertrophic differentiation of chondrocytes during endochondral ossification, suggesting that the C/EBPbeta-p57(Kip2) signal would be a therapeutic target of skeletal disorders like growth retardation and osteoarthritis

    Suppression of Allograft Rejection by Tim-1-Fc through Cross-Linking with a Novel Tim-1 Binding Partner on T Cells

    Get PDF
    Engagement of T-cell immunoglobulin mucin (Tim)-1 on T cells with its ligand, Tim-4, on antigen presenting cells delivers positive costimulatory signals to T cells. However, the molecular mechanisms for Tim-1-mediated regulation of T-cell activation and differentiation are relatively poorly understood. Here we investigated the role of Tim-1 in T-cell responses and allograft rejection using recombinant human Tim-1 extracellular domain and IgG1-Fc fusion proteins (Tim-1-Fc). In vitro assays confirmed that Tim-1-Fc selectively binds to CD4+ effector T cells, but not dendritic cells or natural regulatory T cells (nTregs). Tim-1-Fc was able to inhibit the responses of purified CD4+ T cells that do not express Tim-4 to stimulation by anti-CD3/CD28 mAbs, and this inhibition was associated with reduced AKT and ERK1/2 phosphorylation, but it had no influence on nTregs. Moreover, Tim-1-Fc inhibited the proliferation of CD4+ T cells stimulated by allogeneic dendritic cells. Treatment of recipient mice with Tim-1-Fc significantly prolonged cardiac allograft survival in a fully MHC-mismatched strain combination, which was associated with impaired Th1 response and preserved Th2 and nTregs function. Importantly, the frequency of Foxp3+ cells in splenic CD4+ T cells was increased, thus shifting the balance toward regulators, even though Tim-1-Fc did not induce Foxp3 expression in CD4+CD25− T cells directly. These results indicate that Tim-1-Fc can inhibit T-cell responses through an unknown Tim-1 binding partner on T cells, and it is a promising immunosuppressive agent for preventing allograft rejection
    corecore